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The method of stabilizing unstable periodic orbits in chaotic dynamical systems by Ott, Grebogi, and
Yorke (OGY) is applied to control chaotic scattering in Hamiltonian systems. In particular, we consider
the case of nonhyperbolic chaotic scattering, where there exist Kolmogorov-Arnold-Moser (KAM) sur-
faces in the scattering region. It is found that for short unstable periodic orbits not close to the KAM
surfaces, both the probability that a particle can be controlled and the average time to achieve control
are determined by the initial exponential decay rate of particles in the hyperbolic component. For
periodic orbits near the KAM surfaces, due to the stickiness effect of the KAM surfaces on particle tra-
jectories, the average time to achieve control can greatly exceed that determined by the hyperbolic com-
ponent. The applicability of the OGY method to stabilize intermediate complexes of classical scattering

systems is suggested.

PACS number(s): 05.45.+b, 03.80.+r

I. INTRODUCTION

Chaotic scattering is an important physical process [1]
in which some output variables characterizing the parti-
cle trajectory after the scattering display a sensitive
dependence on some input variables characterizing the
particle trajectory before the scattering. In other words,
arbitrarily small changes in the input variables can cause
large changes in the output variables. It is now under-
stood that chaotic scattering is due to nonattracting
chaotic invariant sets in the phase space. Those sets
embed within themselves an infinite number of unstable
periodic orbits [1].

Figure 1 shows schematically three potential hills [2]
denoted by 4, B, and C that can give rise to chaotic
scattering. The potential is appreciable and positive in
the scattering region but is negligible at large distances.
A particle incident from x =— o can be trapped in the
scattering region for a finite amount of time before leav-
ing the region. By appropriately choosing the potential

FIG. 1. A schematic illustration of a potential system that
can exhibit chaotic scattering.
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form and arranging the configuration of the potential
hills, it is possible to form an infinite number of unstable
periodic orbits in the scattering region [2]. In the phase
space, the closure of these orbits is a nonattracting chaot-
ic invariant set responsible for the chaotic scattering. In
this case, a line segment in phase space crossing the
stable manifold of the chaotic invariant set contains a
Cantor set of intersecting points. Particles initiating from
the Cantor set will spend an infinite amount of time in the
scattering region wandering on the chaotic invariant set.
Nonetheless, this Cantor set has Lebesgue measure zero,
indicating that almost all initial conditions for the
scattering particle are not on the Cantor set but in the
neighborhood of it. Consequently, typical particles in-
cident on the scattering region will be trapped for only a
finite amount of time. There are practical situations (e.g.,
chemical reactions) in which it is desirable to keep a par-
ticle in the scattering region for an arbitrary long time.
We thus address the following question: Can one keep a
particle in the scattering region for as long as one wishes
by arbitrarily small variations of an available system pa-
rameter? A solution to this problem is to stabilize the
scattering trajectory in the neighborhood of some unsta-
ble periodic orbit in the scattering region.

Control of chaos using unstable periodic orbits embed-
ded in a chaotic attractor was proposed by Ott, Grebogi,
and Yorke (OGY) [3]. The basic idea of the OGY
method is as follows. First one chooses an unstable
periodic orbit embedded in the chaotic set, the one which
yields the best system performance according to some cri-
teria. Second, one defines a small region around the
desired periodic orbit. Due to ergodicity, a chaotic tra-
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jectory will eventually fall into this small region. When
this occurs, small, judiciously chosen temporal parameter
perturbations are applied to force the trajectory to ap-
proach the unstable periodic orbit. This method is ex-
tremely flexible because it allows for the stabilization of
different periodic orbits, depending on one’s needs, for
the same set of nominal values of the parameter. Note
that for chaotic attractors, the probability that a chaotic
trajectory enters the neighborhood of the desired unsta-
ble periodic orbit is one [3]. For the case of transient
chaos [4] (e.g., chaotic scattering), the chaotic set is
nonattracting and, hence, almost all initial conditions es-
cape the chaotic set except a set of measure zero. There-
fore, to stabilize unstable periodic orbits embedded in this
set, one must launch an ensemble of initial conditions to-
wards the chaotic set. There is a finite probability that
some of these initial conditions enter the neighborhood of
the desired unstable periodic orbit and can then be stabi-
lized. In this spirit, one controls transient chaos [5] and
hence, controls chaotic scattering.

While controlling transient chaos has been successfully
demonstrated [5], the previous study concentrated on dis-
sipative transient chaos. Although the strategy of Ref.
[5] can be trivially applied to the case of hyperbolic chaot-
ic scattering, the case of nonhyperbolic chaotic scattering
is nontrivial and is worth investigating. Here by “hyper-
bolic chaotic scattering” we mean that all periodic orbits
are unstable and there are no Kolmogorov-Arnold-Moser
(KAM) surfaces in the scattering region and, by “nonhy-
perbolic chaotic scattering” we mean that KAM surfaces
coexist with chaotic invariant sets. The purpose of this
paper is to study the control of nonhyperbolic chaotic
scattering.

It is known [6] that the stickiness effect of the KAM
surfaces leads to an algebraic decay of particles from the
chaotic region [6] at large times. Our major finding is
that for stabilizing short unstable periodic orbits not
close to KAM surfaces, the KAM surfaces practically
have no effect on the probability that a particle can be
controlled and on the average time to achieve the control.
The probability that a particle can be controlled is
defined as the ratio of the number of particles entering
the neighborhood of the target unstable periodic orbit to
the total number of particles launched towards the
scattering region. The major contribution to the percen-
tage of initial conditions that can be controlled results
from the hyperbolic component which gives rise to the in-
itial exponential decay of particles from the scattering re-
gion. The average time to achieve control appears to be
bounded by the inverse of the exponential decay rate, as
if there were no KAM surfaces. (This bound of the aver-
age controlling time has been previously demonstrated in
the case of controlling dissipative transient chaos [5].)
While for stabilizing unstable periodic orbits near KAM
surfaces, the stickiness effect of the KAM surfaces has an
influence on scattering trajectories approaching the
periodic orbits. In this case, the average time to achieve
control can greatly exceed the time determined by the hy-
perbolic component.

Another issue concerns the possible occurrence of
complex-conjugate eigenvalues (on the unit circle) of un-

stable periodic orbits in Hamiltonian systems. In this sit-
uation, we choose a modified algorithm for controlling
Hamiltonian chaos [7], which makes use of the stable and
unstable directions of periodic orbits.

At this point, it is worth comparing our approach to
control chaotic scattering with another one worked out
by Lu et al. [8]. They investigated the scattering between
two atoms interacting via a Morse potential in the pres-
ence of a laser field. The scattering is nonhyperbolic be-
cause there are KAM surfaces in the phase space. The
undriven system is integrable. By switching on the driv-
ing force (the electromagnetic field of the laser), trajec-
tories can be trapped by a newly created stable resonance
island. In this type of control the stabilized state is inside
a KAM surface and is, thus, a state which is not accessi-
ble by scattering trajectories in the permanently driven
system. Note, furthermore, that the perturbation (the
driving force) must be strong in such cases, and there is,
therefore, no correspondence between the controlled and
uncontrolled states. This type of approach is different
from ours based on the OGY method where a precise
tailoring of the controlling process is possible by applying
weak perturbations around preselected unstable periodic
orbits in the chaotic sea of scattering trajectories.

The organization of the paper is as follows. In Sec. II
we review briefly the OGY method and the modified al-
gorithm [7] that is particularly suitable for Hamiltonian
systems. In Sec. III we describe a simple scattering mod-
el, the Gaspard-Rice scattering map [9] (which will be
used as an illustrative example), and demonstrate that our
modified control algorithm is quite effective to stabilize
unstable periodic orbits. In Sec. IV we discuss the effect
of KAM surfaces. In Sec. V, we present the conclusion.

II. THE METHOD OF CONTROL

We consider a chaotic scattering system that can be de-
scribed by the following two-dimensional symplectic map
(since energy is conserved) on the Poincaré surface of sec-
tion,

Xn+1:F(Xn’P) H 1)

where n denotes the discrete time, X, E€R?, F is a smooth
function in its variables and p €R is an externally accessi-
ble parameter. For a scattering system, p can be, say, the
amplitude or the frequency of some external electromag-
netic field. Since we do not want to change the dynamics
substantially, we restrict parameter perturbations to be
small. In other words, we require

lP'_P0|<8, (2)

where p, is some nominal parameter value and & is a
small number defining the range of parameter variation.
To achieve the control, we launch particles originating
from an ensemble of initial conditions towards the
scattering center. Most of the particles will be scattered
away from the system without getting close to the target
periodic orbit. Our objective is to program the parameter
p in such a way that trajectories which do enter the
neighborhood of the target periodic orbit are stabilized,
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where by “neighborhood” we mean a small region whose
size is proportional to 8.

Specifically, let the unstable orbit of period m to be
controlled  be X (pg)—>Xo,(po)— -+ =X (po)

—>Xo(m +1)(p0)=x01(p0 ). The linearized dynamics in
the neighborhood of the period-m orbit is

Xy +1=Xo, ,, (Po)= AlX, ~Xo (p)]+B(8p), , ()
where p, =p,+(Ap),, (Ap), =8, A is the 2X2 Jacobian
matrix, and B is a two-dimensional column vector,

(n

yp=ro’
B l @
B—DPF(X,p) szo(n)rP:PO .

In Eq. (4), we do not express the Jacobian matrix A in
terms of eigenvalues and eigenvectors because there may
exist complex-conjugate eigenvalues on the unit circle at
some of the periodic points for Hamiltonian systems [7].
Instead we explore the stable and unstable directions as-
sociated with these points. The stable and unstable direc-
tions do not necessarily coincide with the eigenvectors at
a given periodic point if m%1. In the case of complex-
conjugate eigenvalues, eigenvectors are not even defined
in the real plane. The existence of both stable and unsta-
ble directions around each orbit point can be seen as fol-
lows. Let us choose a small circle of radius € around
some orbit point XO,.‘ The image of a small circle under

F!is an ellipse at XO( L This deformation from a cir-

cle to an ellipse means that distances along the major axis
of the ellipse at XO( _,,contract as a result of the map.

Similarly, a small circle at XO(" _,, maps into an ellipse at
XO,. under F, which means that distances along the in-
verse image of the major axis of the ellipse at X, expand
under F. Therefore, the forward image of the m;jor axis
of the ellipse at Xo(n ) and, the major axis of the ellipse

at XO,, (the image of the small circle at Xo(nil)) approxi-

mate the stable and unstable directions at Xon, respec-
tively. See Refs. [7,10] for a systematic algorithm to
compute stable and unstable directions for general two-
dimensional maps.

Let €, and e
at XO,. and, f

«(n) b€ the stable and unstable directions

s(ny and f,,) be two vectors that satisfy

w€sm =1 and £, €)= (€, =0.
To stabilize the orbit, we require the next iteration of a
trajectory point after falling into one of the small neigh-
borhood around Xo, to lie on the stable direction at

fu(n)'eu(n)zfs(

XO(n _H)(po ) i.e.,

[Xy+1—Xo, . (Po)] £, +1)=0. 5

(n+1)

Substituting Eq. (3) into Eq. (5), we obtain the following
expression for the parameter perturbations:

(Ap). = {A[Xn_xmn)(Po)]}'fu(nH) ©)
Pon _B'fu(nJrl) )

We emphasize that parameter perturbations calculated
from Eq. (6) are applied to the system at each time step,
thus minimizing the effect of external noise [3,11]. It
should also be noted that there are other ways to stabilize
unstable periodic orbits, which are applicable to higher-
dimensional systems, one of them is the “pole-placement
method” [12].

III. CONTROLLING THE GASPARD-RICE
SCATTERING SYSTEM

We illustrate our control algorithm Eq. (6) via a simple
model of chaotic scattering due to Gaspard and Rice [9].
Originally, the model was used to study the dynamics of
fragmenting molecules. The model describes a free one-
dimensional particle subject to periodic kicks. To
achieve the control, it is necessary to have some external-
ly adjustable parameter. The parameter that quantifies
the kicking strength is a natural choice. We also allow for
the kicking frequency to be used as a control parameter.
The system can be described by the following Hamiltoni-
an:

)

H(X,P)=P?/2+T,G(X) 3 &:t—T,;), (7)

i=—o

where the mass of the particle is unit, T, is a constant,
the sequence {7} is the occurrence time of the kicks,
and T,G (X) is the amplitude of the kick at position X in
the Hamiltonian. Let (X,,P,) be the position and
momentum of the particle (dynamical variables) before
the nth kick. Immediately before the (n + 1)th kick, the
dynamical variables are given by the following area-
preserving map:

dG(X,)
dx, '

n

Pn+1:Pn_T0

(8)
Xn+1=Xn+TnPn+1 .

In order for the toy model Eq. (8) to exhibit scattering
dynamics, it is necessary to choose G(X) such that
dG (X)/dX vanishes at large distance. Gaspard and Rice
chose the following form [9] for G (X):

G(X)=D(1—e )2 9)

where D and a are parameters. After the following scal-
ing

P,—P,/(aTy), X,—X,/a, (10)
the map becomes

Pn+1:Pn_d(e*Xn_e*2Xn) ,

(11)

X, 1 =X, + T,

Pn +1 >
where d =2a?T3D is proportional to the kicking
strength. In Eq. (11), both d and T, can serve as the con-
trol parameter.

Depending on the value of d and T,, the map (11)
displays different dynamical behaviors. For T,=T\,
Gaspard and Rice demonstrated that the map produces
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both nonhyperbolic and hyperbolic chaotic scattering [9]
when d is in different ranges. In particular, for
0<d <d,=4.58, there are both KAM surfaces and a
nonscattering chaotic invariant set in the phase space
(nonhyperbolic chaotic scattering). While for d >d, all
the KAM surfaces are apparently destroyed and the
scattering is hyperbolic. To perform the control we
choose the system when d =1.8. At this d value, there is
a large KAM island surrounded by a chaotic set, as
shown in Fig. 2(a). The stable and unstable manifolds of
the chaotic invariant set are shown in Figs. 2(b) and 2(c),
respectively. The chaotic invariant set and its stable and
unstable manifolds are numerically obtained by the
“sprinkler method” [13,4]. By this method, we first
choose a grid of 1500 1500 initial conditions in a region
determined by X€[—1,6] and PE[—1.5,1.5]. We then
set a critical time n (integer) and keep track of particles
with trajectories {X,,P,}, n=0,1,...,n, that escape
the scattering region in time longer than ny,. When the
dynamical variables satisfy X = 10 and P >0 we consider
that the particles have escaped the scattering region. The
chaotic invariant set and its stable and unstable manifolds
are approximately the sets determined by the points
[Xn’Pn ]|n:n0/2’ [Xn7Pn ]|n=0’ and [Xn’Pn ]|n:n0’ respec-
tively, of all trapped trajectories (n is chosen to be 40 in
our numerical experiments). Generally, particles initiat-
ed from X =+ oo with P <0 approach the scattering re-
gion along the stable manifold, wander in the chaotic set,
and eventually leave the scattering region (P >0) along
the unstable manifold. When looking for an appropriate
periodic orbit to stabilize, we first observe that there is
one single fixed point in the system (X =0,P =0). Its ex-
istence does not depend on any parameter. The origin is,
therefore, uncontrollable by parameter perturbation. We
thus have to take a longer periodic orbit to control,
which immediately involves the problem of the oc-
currence of complex-conjugate local eigenvalues on the
unit circle. The shortest unstable periodic orbits found
are 5-cycles. Also shown in Figs. 2(a)-2(c) are locations
of a period-5 orbit that we set out to stabilize. The num-
bers 1-5 denote the order in which the components of
the periodic orbit are visited under the map. We find
that the eigenvalues of the Jacobian matrices at the com-
ponents 1 and 4 are complex conjugates to each other
and are on the unit circle. Therefore, it is preferable to
use the control method described in Sec. IT and Ref. [7].
To achieve control, we take an ensemble of particles
simulating what is going on in a physical scattering pro-
cess: we launch a large number of particles towards the
scattering region by choosing different P values (negative)
at a fixed position X =8. Most of the particles wander in
the scattering region for a finite time and then escape.
Among all the particles, any one entering the neighbor-
hood of the period-5 orbit (defined to be a ball of radius
€=0.01 around each component) will be stabilized. Fig-
ures 3(a) and 3(b) show an example, where a particle
starting from X =8 and P = —4.398 117 is stabilized by
perturbing the parameter d according to Eq. (6). The
transient time for the particle to enter the neighborhood
of the period-5 orbit is 21. The parameter control based
on Eq. (6) is turned on at the same time (n =21). The

range of the parameter perturbation is chosen to be
6=0.01. Specifically, Figs. 3(a) and 3(b) show the X,-
versus-n and P,-versus-n time series, respectively, where
the stabilized X-versus-n curve shows only three distinct
X, values because two pairs of the period-5 orbit are de-
generate in the X axis [see Fig. 2(a)]. Most of the parti-

1.5
1.01
0.5

P 0.0
—0.5

—-1.0

-1.5

FIG. 2. For the Gaspard-Rice scattering system of Eq. (11)
with T, =T, and d =1.8, (a) the chaotic invariant set, (b) the
stable manifold, and (c) the unstable manifold of the chaotic set.
In (a)—(c) there is also a KAM island. Crosses denote the com-
ponents of the period-5 orbit chosen to be stabilized. The num-
bers 1-5 denote the sequence of the component under the map.
Component 1 is sitting at (X,=0.36997,P,~=0.828 66). Its
Jacobian matrix (as well as that of component 4) possesses
complex-conjugate pairs of eigenvalues on the unit circle. The
unstable eigenvalue of the entire cycle has been found to be
16.318, and, correspondingly, A, =2.7923.



48 STABILIZING CHAOTIC-SCATTERING TRAJECTORIES. . . 713

cles that can enter the neighborhood of the period-5 orbit
have similar short transient times n =40. This indicates
that those particles have not experienced the stickiness of
the KAM surfaces (see Sec. IV for details). However,
long transient times are also possible, although these
cases are rare for this period-5 orbit. Figures 3(c) and
3(d) show such a situation, where the transient time is
n=133 for a particle with initial condition
(X,P)=(8,—9.072119).

Using d as a control parameter corresponds to an am-
plitude modulation at a fixed frequency T, !. A control
via frequency modulation is also possible by keeping in
Eq. (8) T,=T, as long as the particle is outside a given
neighborhood of the period-5 orbit, and by choosing
Ap,=T,—T, at fixed d as the perturbation according to
Eq. (6) when the particle is inside the neighborhood. This
leads to the same results.

Although the above strategy to stabilize unstable
periodic orbits works in the case of chaotic scattering
(transient chaos), we stress that we still face two major
problems. The first is the influence of the external noise,
which can kick the already stabilized trajectory out of the

2.0

1.5

1.01

0.0

—0.5 1

¢ control "on"

—1.01

T T T T

0 20 40 60 80
n

control "on"

0 50 100 150 200
n

neighborhood of the periodic orbit. In the case of con-
trolling chaotic attractors, this is not as severe because
the particle trajectory reenters the stabilizing region after
a finite transient time and can then be controlled again
[3]. However, in the case of controlling chaotic scatter-
ing, the effect of noise could be disastrous because, when
the noise kicks the particle out of the stabilizing region, it
is most likely that the particle will escape the system and
never return. Increasing the size of the stabilizing region
around the periodic orbit (or equivalently, the magnitude
of the parameter perturbation) might alleviate the prob-
lem, because by doing so we reduce the probability for
the noise to kick out the particle. Another possible solu-
tion is to induce some feedback mechanism to reinject the
particle into the scattering region when it is kicked out.
The effect of noise, which could be so drastic for a single
trajectory, is much weaker for the entire ensemble con-
sidered. It might happen that noise kicks such particles
into the stabilizing region that would not be controlled in
the deterministic case. This shows again that the control
of chaotic scattering can only be realistic by using beams
containing large numbers of particles.

1.5
1.0

0.5

—0.51

—1.0 1 T

~1.5- control "on"

T T T T

0 20 40 60 80
n

1.5
1.0
0.57 || | L

P 0.0 |

—0.5 | |

-1.0 ¢

1.5 control "on"
T T T

0 50 100 150 200

n

FIG. 3. Two examples of stabilizing an unstable period-5 orbit for the Gaspard-Rice scattering system, as shown in Figs. 2(a)-2(c).
In the first example, a particle starting from X =8 and P = —4.398 117 is stabilized around the periodic orbit by perturbing d in Eq.
(11). The transient time is 21 and the maximum allowed parameter perturbation is 0.01. (a) The X,-vs-n and (b) P,-vs-n times series
before and after control. This rather short transient time indicates that the particle has not experienced the KAM surfaces before be-
ing controlled (see Sec. IV). In the second example, a particle starting from X =8 and P = —9.072 119 is stabilized around the
periodic orbit. The transient time is 133. The maximum allowed parameter perturbation for d is still 0.01. (c) The X,-vs-n and (d)
P,-vs-n time series before and after control. This relatively long transient time reflects the influence of the KAM surfaces.
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The second problem concerns the probability that a
particle can be stabilized. As we mentioned in Sec. I, in
the case of a chaotic attractor virtually any initial condi-
tion can be stabilized, while in controlling chaotic
scattering only a tiny fraction of initial conditions can be
stabilized. Depending on the size of the stabilizing re-
gion, the number of trajectories entering this region
obeys a scaling relation (to be discussed in Sec. IV).
Devising a scheme that uses a feedback mechanism (like
the case of controlling a chaotic attractor [3]) in a noisy
environment and at the same time increases significantly
the probability that a particle can be controlled has yet to
be achieved.

IV. INFLUENCE OF KAM SURFACES

In controlling dissipative transient chaos, the number
of trajectories that fall in some € neighborhood of a
periodic orbit scales with € algebraically [5],

N(e)~exr) | (12)

where a(y) is a scaling exponent that depends on the (ex-
ponential) escape rate y of particles. The escape rate y is
the reciprocal value of the averaged scattering time. In
the case where the neighborhood is chosen as a ball of ra-
dius proportional to the magnitude of the parameter per-
turbation 8, the scaling exponent is given by [3,5]

Ay =7
}\’ b

s

aly)=1 (13)
where A, and A, are the negative and positive Lyapunov
exponents of the periodic orbit to be stabilized, respec-
tively. For a Hamiltonian system A;+A,=0, and Eq.
(13) becomes

a(V)ZZ—XL . (14)

u

In nonhyperbolic chaotic scattering, due to the coex-
istence of a chaotic invariant set and KAM surfaces, par-
ticles decay from the scattering region exponentially ini-
tially and then algebraically [6]. The reason is that, ini-
tially, particles only wander in the chaotic set without ex-
periencing KAM surfaces, and consequently they decay
exponentially, as in hyperbolic chaotic scattering. For
large times, it is more probable that particles wander in
the vicinity of KAM surfaces. The stickiness effect of
KAM surfaces then gives rise to the algebraic decay law.
Figures 4(a) and 4(b) show the exponential and algebraic
decay in short- and long-time scales, respectively, corre-
sponding to the phase-space structure of Figs. 2(a)-2(c)
for the Gaspard-Rice map. To obtain Figs. 4(a) and 4(b),
we launch 10° particles at X =8 with P uniformly distri-
buted in [ —10,0] and record the particles that have not
exited the system (X < 10) at time ¢. The short-time-scale
exponential decay rate is found to be y =0.042.

The scaling exponent a in Eq. (14) depends on the ex-
ponential decay rate . In the case of algebraic decay,
however, such a decay rate is not defined. The fact that
the unstable period-5 orbit lies in the chaotic invariant
set (hyperbolic component) and it is not in the immediate

vicinity of the KAM island [Figs. 2(a)—-2(c)] suggests that
the major contribution to the probability that a particle
can be controlled is mainly determined by the short-time
exponential decay rate y. This is expected by noting in
Figs. 4(a) and 4(b) that the number of particles has de-
creased by 99% at the crossover time 7, ~40 when the
algebraic decay starts. Hence, it is most probable that
particles getting close to the period-5 orbit only wander
in the hyperbolic component without experiencing the
KAM island. Although a particle may stay in the scatter-
ing region for ¢ > ¢, wandering near the KAM island and
then enter the neighborhood of the period-5 orbit, we ex-
pect such a probability to be extremely small. Figure 5(a)
shows, on a logarithmic scale, the N (€)-versus-€ plot,
where 107 particles are launched at X =8 with their mo-
menta uniformly distributed in (—10,0). Such a plot can
be fit by a straight line with slope 1.92. Using the short-
time-scale exponential decay exponent in Eq. (14), we
found that a=1.98. So indeed, the major contribution to
N (€) comes from the chaotic component, as if there were

6 1 1 I
(a)
5 — ormm -
)
Z
(=]
—
an
S}
=2
=
Z
S
—
B0
)
i)

logm (t)

FIG. 4. (a) The short-time exponential decay and (b) the
long-time algebraic decay corresponding to the phase-space
structure [Figs. 2(a)-2(c)]. The short-time-scale exponential de-
cay rate is approximately y =0.042.
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no KAM surfaces.

For controlling dissipative transient chaos, it was
found [5] that the average time to achieve the control
7(€) satisfies

e)<1/y . (15)

That is, 7(€) is bounded by the inverse of the exponential
decay rate. For our case of nonhyperbolic chaotic
scattering, this relation appears to hold, as shown in Fig.
5(b), with the average scattering time of the hyperbolic
component as the upper bound. This further suggests
that the stickiness effect of KAM surfaces plays virtually
no role on the average time to achieve control.

On the other hand, when an unstable periodic orbit is
in the vicinity of the KAM surfaces, we expect the sticki-

logyq N(e)
w

2 ﬁ
14
*
2l
T T T T T T
-3.5 -3.0 -25 2.0 -1.5 -1.0
logig €
2.0 : ! !
(b)
1
logyoy =1.38
s / _
u] i
o) g 0 O, ™0
< 1.0 o Loy
(=1 - [
— . U
%g E‘Ebm m
— m
0.5 r
0 T T ™ F
-5 -4 -3 -2 -1

logyp €

FIG. 5. (a) The number N (€) of trajectories that enter an €
neighborhood of the unstable periodic orbit vs €. (b) The aver-
age time to achieve the control vs €. Note that this average time
is bounded by the inverse of the short-time-scale exponential de-
cay rate. In this case, we launch 107 particles at X =8 with
their momentum values uniformly distributed in (—10,0) and €
has been changed in the range (107%2,10~!). Particles are con-
sidered to have exited the system if X > 10. Both (a) and (b) are
on a logarithmic scale.

ness effect of the KAM surfaces to be important for parti-
cle trajectories that enter the neighborhood of the
periodic orbit. In this case, naturally, the average time to
achieve control can greatly exceed that determined by the
hyperbolic component. Figures 6(a)—6(d) show an unsta-
ble period-9 orbit (denoted by crosses) near the KAM
surfaces. Figure 6(a) has the same scale as in Figs.
2(a)-2(c) so that one can see the closeness of this period-9
orbit to the KAM surfaces, as compared with the
period-5 orbit in Figs. 2(a)-2(c). Figure 6(b) is a blowup
of Fig. 6(a), where the numbers denote the iterates of the
orbit under the map. Figures 6(c) and 6(d) show the N (€)
and 7(e)-versus-€ plots, respectively, where 108 particles
are launched at X =8 with their momenta uniformly dis-
tributed in (—10,0). Clearly, the scaling relation (12)
still holds in this case. This is expected because, although
the stickiness of the KAM surfaces can greatly increase
the average time that a particle can stay in the scattering
region, the probability that a particle can be controlled
depends only on the number of particles entering the €
neighborhood of the periodic orbit, no matter how long it
takes for each individual particle to enter this neighbor-
hood. Note, however, that the exponent is less than a(y)
computed from Eq. (14) with the Lyapunov exponent
A, =1.43 of the period-9 orbit. The slope of the fitting
(straight) line in Fig. 6(c) is 1.78, which is also less than
that (1.92) in Fig. 5(a). This means that in this case, it is
easier for the particles to enter the neighborhood of the
periodic orbit. Nonetheless, the average time to achieve
control is indeed much larger than 1/, as can be seen in
Fig. 6(d).

The effect of KAM surfaces in controlling nonhyper-
bolic chaotic scattering, as discussed above, depends on
the particular, though typical, phase-space structure
shown in Figs. 2(a)-2(c) in which the chaotic component
and KAM surfaces appear to exist in the same “layer”
[6]. However, in typical Hamiltonian systems, the phase
space could also be divided into layered components that
are separated from each other by Cantori [14]. In such a
case, our observation that N (€) and 7(e) depend only on
the chaotic component for controlling short periodic or-
bits not close to the KAM surfaces should still apply, if
the ensemble of initial conditions and the target unstable
periodic orbit are in the same layer. On the other hand,
if initial conditions and the target periodic orbit are
separated from each other by Cantori, we expect the
probability for some particle to penetrate the Cantori and
enter the neighborhood of the target to be extremely
small. How to achieve control in layered Hamiltonian
phase-space structures remains an open question.

V. CONCLUSION

In this work, we demonstrate the applicability of the
OGY controlling chaos method to the more complicated
case (as compared with hyperbolic chaotic scattering) of
nonhyperbolic chaotic scattering. We incorporate an al-
gorithm that makes use of the stable and unstable direc-
tions at unstable periodic orbits to resolve the difficulty
associated with the existence of complex-conjugate eigen-
values (on the unit circle) arising in Hamiltonian systems.
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FIG. 6. (a) A period-9 orbit in the vicinity of the KAM surfaces. The scale is the same as in Figs. 2(a)-2(c). (b) A blowup of (a).
The numbers denote the iterates of the orbit under the map. The positive Lyapunov exponent of the orbit is A, =1.4334. (c) The
number N (€) of trajectories that fall in an € neighborhood of the period-9 orbit vs €. The slope of the fitting line is approximately
1.78. (d) The average time to achieve control 7(€) vs €. In this case, 7(€) can greatly exceed 1/y. In this figure, we launch 10°® parti-
cles at X =8 with their momentum values uniformly distributed in (—10,0), and € has been changed in the range (1074,107!). Parti-
cles are considered to have exited the system if X > 10. Both (c) and (d) are on a logarithmic scale.

Our method thus provides us with the possibility of sta-
bilizing intermediate complexes of driven classical
scattering systems in time-periodic states. Our major
finding is that if the unstable periodic orbit to be stabi-
lized is not close to the KAM surfaces, the probability
that a particle can be controlled and the average time to
achieve the control depend mainly on the dynamical
properties of the hyperbolic component, as if there were
no KAM surfaces, while for periodic orbits in the vicinity
of the KAM surfaces, the stickiness effect of the KAM
surfaces can be very influential for control.

More generally, we can say that the invariant set un-
derlying chaotic scattering appears to be the union of a
hyperbolic component, equivalent to a chaotic saddle,
and another part consisting of the KAM surfaces and
their close neighborhoods. It might often happen that
trajectories escaping the scattering region relatively soon
do not feel the influence of KAM surfaces. The scatter-
ing behavior is then different for different time scales.

For times shorter than some crossover value ¢, the effect
of the chaotic saddle dominates and the system behaves
as if it were hyperbolic, while the really asymptotic
behavior ¢ >t, is governed by the nonhyperbolic KAM
surfaces. Our observation shows that the control of
periodic orbits lying away from the KAM surfaces is a
short-time effect on chaotic scattering, and the control of
periodic orbits in the vicinity of the KAM surfaces can
be a long-time effect.
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